Grade 12 LS – Physics

Be Smart ACADEMY

Chapter 2: Linear Momentum

Prepared and presented by: Mr. Mohamad Seif

1 Identify the types of rectilinear motion

2 Recall position and velocity vector

Apply Newton's 3rd law (Principle of interaction)

Uniform Rectilinear Motion (U.R.M):

A motion is said to be U.R.M if the velocity is constant (V = cst), and the acceleration is zero (a = 0), during a constant time between two consecutive points (τ)

$$A_0$$
 τ A_1 τ A_2 τ A_3 τ A_4

The average velocity between two points ($A_0 & A_4$) is:

$$V_{av} = V_{0,4} = \frac{\Delta x}{\Delta t} = \frac{A_0 A_4}{4\tau}$$

Uniformly Accelerated Rectilinear Motion (U.A.R.M):

A motion is said to be U.A.R.M if the velocity increases with time, and the acceleration is positive & constant (a > 0).

The average velocity between any two points ($A_1 & A_4$) is:

$$V_{av} = V_{1,4} = \frac{\Delta x}{\Delta t} = \frac{A_1 A_4}{3\tau}$$

Uniformly Decelerated Rectilinear Motion (U.D.R.M):

A motion is said to be U.D.R.M if the velocity decreases with time, and the acceleration is negative & constant (a < 0).

The average velocity between any two points ($A_2 \& A_4$) is:

$$V_{av} = V_{2,4} = \frac{\Delta x}{\Delta t} = \frac{A_2 A_4}{2\tau}$$

Application 1:

Consider a particle moves a straight line, where A_0 , to A_5 are the successive positions of the center of mass at different instants.

Let $\tau = 50 \text{ms}$ to be the time interval between any two successive position

Determine the magnitude of the average velocity of the particle between $A_1\&A_3$ then between $A_0\&A_5$

$$V_{1,3} = \frac{A_1 A_3}{2\tau}$$

$$V_{1,3} = \frac{A_1 A_2 + A_2 A_3}{t_3 - t_1}$$

$$V_{1,3} = \frac{A_1 A_2 + A_2 A_3}{3\tau - \tau}$$

$$V_{1,3} = \frac{(1.5 + 2.5) \times 10^{-2}}{2\tau}$$

 A_5

4.5cm

$$\begin{array}{c}
V_{1,3} = \frac{4 \times 10^{-2}}{2 \times 50 \times 10^{-3}} \\
\hline
\text{DEMY}
\end{array}$$

$$V_{1.3} = 0.4m/s$$

$$V_{0,5} = \frac{A_0 A_5}{t_5 - t_0}$$

$$V_{0,5} = \frac{A_0 A_1 + A_1 A_2 + A_2 A_3 + A_3 A_4 + A_4 A_5}{5\tau - 0}$$

$$V_{0,5} = \frac{(0.5 + 1.5 + 2.5 + 3.5 + 4.5).10^{-2}}{5\tau}$$

$$V_{0,5} = \frac{12.5 \times 10^{-2}}{5 \times 50 \times 10^{-3}}$$

$$V_{0,5} = 0.5 m/s$$

Position vector: It is the vector that joins the origin

O to the moving particle:

$$\overrightarrow{OM} = \overrightarrow{r} = x\overrightarrow{i} + y\overrightarrow{j}$$

Velocity Vector: The velocity vector is the derivative of the position vector w.r.t time:

$$\vec{V} = (x)'\vec{\iota} + (y)'\vec{\jmath}$$

Be Smart ACADEMY

Application 2:

Given the parametric equations x = 2t and $y = 4t^2$ are the coordinates of point (M) at time t.

1.Find the position vector of (M) at instant t.

$$\overrightarrow{OM} = \overrightarrow{r} = x\overrightarrow{i} + y\overrightarrow{j}$$

$$\overrightarrow{OM} = \overrightarrow{r} = 2t\overrightarrow{i} + 4t^2\overrightarrow{j}$$

2. Find the velocity vector of the point M at instant t

The velocity vector is the derivative of position vector w.r.t time:

$$\vec{\mathbf{V}} = 2\vec{\mathbf{i}} + 8t\vec{\mathbf{j}}$$

Be Smart ACADEMY

A system of particles consists three particles:

- Particle (1): of mass m_1 and a position vector \vec{r}_1
- Particle (2): of mass m_2 and a position vector \vec{r}_2
- Particle (3): of mass m_3 and a position vector \vec{r}_3

The position of the center of mass of the above system is:

$$\vec{r}_{G} = \frac{m_{1}\vec{r}_{1} + m_{2}\vec{r}_{2} + \cdots m_{N}\vec{r}_{N}}{m_{1} + m_{2} + \cdots m_{N}}$$

$$x_{G} = \frac{\mathbf{m}_{1}x_{1} + \mathbf{m}_{2}x_{2} + \cdots + \mathbf{m}_{N}x_{N}}{\mathbf{m}_{1} + \mathbf{m}_{2} + \cdots + \mathbf{m}_{N}}$$

$$y_{G} = \frac{m_{1}y_{1} + m_{2}y_{2} + \cdots + m_{N}y_{N}}{m_{1} + m_{2} + \cdots + m_{N}}$$

 m_3

 m_2

Application 3: A system formed of three particles as shown in the figure. Given $m_1 = 1kg$; $m_2 = 2kg$; $m_3 = 3kg$ Find the position vector of the center of mass of the above system.

$$\overrightarrow{OG} = \overrightarrow{r}_G = \frac{m_1 \overrightarrow{r}_1 + m_2 \overrightarrow{r}_2 + m_3 \overrightarrow{r}_3}{m_1 + m_2 + m_3}$$

$$\vec{r}_G = \frac{1(3\vec{j}) + 2(2\vec{i} + 2\vec{j}) + 3(3\vec{i})}{(1+2+3)}$$

Newton's 3rd law (Principle of interaction)

Principle of interaction:

For every action there exists an equal and opposite reaction

Vector relation

 $\vec{F}_{A/B} + \vec{F}_{B/A} = \vec{0}$

$$\vec{\mathbf{F}}_{\mathbf{A}/\mathbf{B}} = -\vec{\mathbf{F}}_{\mathbf{B}/A}$$

 $F_{A/B} \neq F_{B/A}$

Magnitude

Grade 12 LS – Physics

Be Smart ACADEMY

Chapter 2: Linear Momentum

Prepared and presented by: Mr. Mohamad Seif

2 Linear Momentum of system of particles

3 Linear Momentum of center of mass

Linear momentum is a vector quantity that depends on the motion of an object.

Linear momentum is the product of mass with the velocity vector.

- m: mass of the particle, expressed in kg.
- \overrightarrow{V} : velocity vector of the particle. Its magnitude is the speed, expressed in m/s.
- \overrightarrow{P} : Linear momentum of the particle. Its magnitude is expressed in kg.m/s.

Be Smart ACADEMY

Application 4:

Consider a ball of mass 250g moving with a velocity of magnitude V = 3m/s as shown in the figure.

Calculate the linear momentum of the ball.

$$\vec{P} = m \times \vec{V} = 0.25 \times (+3\vec{i})$$

$$\vec{P} = 0.75\vec{i} (kg. m/s) \Delta DEMY$$

Application 5:

A ball of mass m = 250g moves with a velocity of magnitude V = 3m/s as shown in the figure.

1. Calculate the linear momentum of the ball.

$$\vec{P} = m \times \vec{V} = 0.25 \times (-3\vec{i})$$
 $\vec{P} = -0.75\vec{i}$ (kg. m/s)

2.Draw on the figure the linear momentum vector without scale

The linear momentum is of same direction as the velocity vector.

Linear Momentum of system of particles

Consider a system consists of of particles as shown in the figure.

The linear momentum of the system of particles is the vector sum of all the linear momentum of its particles.

$$\overrightarrow{P}_{\text{sys}} = \overrightarrow{P}_1 + \overrightarrow{P}_2 + \overrightarrow{P}_3 + \dots + \overrightarrow{P}_n$$

Where:

$$\overrightarrow{P}_1 = m_1 \overrightarrow{V}_1$$

$$\overrightarrow{P}_2 = m_2 \overrightarrow{V}_2$$

$$\vec{P}_3 = m_3 \vec{V}_3$$

$$\vec{P}_n = m_n \vec{V}_n$$

Consider the system of particles as shown in the figure.

The position vector of the center of mass is:

$$\vec{\mathbf{r}}_{G} = \frac{m_{1}\vec{r}_{1} + m_{2}\vec{r}_{2} + m_{3}\vec{r}_{3}}{m_{1} + m_{2} + m_{3}}$$

Where:
$$M = m_1 + m_2 + m_3$$

$$M\vec{r}_{G} = m_{1}\vec{r}_{1} + m_{2}\vec{r}_{2} + m_{3}\vec{r}_{3}$$

$$\vec{Mr_G} = m_1 \vec{r}_1 + m_2 \vec{r}_2 + m_3 \vec{r}_3$$

Differentiate the above equation w.r.t time:

$$M\overrightarrow{V}_G = m_1\overrightarrow{V}_1 + m_1\overrightarrow{V}_2 + m_3\overrightarrow{V}_3$$

$$\vec{P}_G = \vec{P}_1 + \vec{P}_2 + \vec{P}_3$$

$$= P_1 + P_2 + P_3$$

$$= Smart$$

But
$$\vec{P}_{sys} = \vec{P}_1 + \vec{P}_2 + \vec{P}_3$$
 $\vec{P}_G = \vec{P}_{sys} = M\vec{V}_G$

$$\vec{\mathbf{P}_{\mathbf{G}}} = \vec{\mathbf{P}}_{\mathbf{SVS}} = \mathbf{M}\vec{\mathbf{V}_{\mathbf{G}}}$$

Application 6:

- Consider a system of two balls A of mass $m_1 = 50g$ and B of mass $m_2 = 75g$ are moving horizontally in opposite directions as shown in the figure.
- The two ball (A) and (B) moves with velocities $V_1 = 4m/s$ and $V_2 = 6m/s$ respectively.
- 1. Determine the linear momentum of the system (A B).
- 2. Deduce the velocity of the center of mass of the above system

(A):
$$m_1 = 50g$$
; $V_1 = 4m/s$; Ball (B) $m_2 = 75g$; $V_2 = 6m/s$.

1. Determine the linear momentum of the system (A - B).

$$\vec{P}_{sys} = \vec{P}_1 + \vec{P}_2 = m_1 \vec{V}_1 + m_2 \vec{V}_2$$

$$\vec{P}_{sys} = 0.05 \times (4\vec{i}) + 0.075 \times (-6\vec{i})$$

$$\vec{P}_{sys} = -0.25\vec{i}$$
 (Kg. m/s)

2.Deduce the velocity of the center of mass of the above system

$$\vec{P}_G = \vec{P}_{sys} = M\vec{V}_G$$

$$\vec{V}_G = \frac{\vec{P}_{sys}}{M}$$

$$\vec{V}_G = \frac{-0.25\vec{1}}{(0.05 + 0.075)}$$

$$\vec{V}_G = -2\vec{i} (m/s)$$

Grade 12 LS – Physics

Be Smart ACADEMY

Chapter 2: Linear Momentum

Prepared and presented by: Mr. Mohamad Seif

1 Apply Newton's second law in terms of Linear momentum.

2 Apply the principle of conservation of Linear momentum.

The Linear momentum of a system is given by: $\vec{P} = M\vec{V_G}$

derive w.r.t time:
$$\frac{d\vec{p}}{dt} = M\vec{V}'$$

$$\frac{d\vec{p}}{dt} = M\vec{a}$$

The sum of all external forces acting on a system of particles is equal to the time derivative of the linear momentum of the system.

Can be applied for system or for particle.

Application 7:

A solid (S) of mass m = 5Kg moves on a horizontal plane. The solid (S) starts its motion from rest at $t_0 = 0$ under the action of friction force of magnitude f.

- 1. Name and represent the forces acting on the solid (S).
- 2. Determine using newton's 2^{nd} law, the magnitude of friction, knowing that $\vec{P} = (-2t + 3)\vec{i}$

m = 5Kg; g = 10N/kg.

1. Name and represent the forces acting on the solid (S).

The forces are:

Weight (\overrightarrow{W})

Normal (\overline{N}) .

Friction (\vec{f})

$$m = 5Kg; g = 10N/kg; \vec{P} = (-2t + 3)\vec{i}$$

2.Determine using newton's 2nd law, the magnitude of friction, knowing that $\overrightarrow{P} = 2t + 3$.

Apply newton's 2^{nd} law: $\sum \vec{F}_{ex} = \frac{d\vec{P}}{dt}$.

$$\sum \overrightarrow{F}_{ex} = \frac{dP}{dt}$$
.

$$\overrightarrow{W} + \overrightarrow{N} + \overrightarrow{f} = \frac{d\overrightarrow{P}}{dt} \implies m\overrightarrow{g} + \overrightarrow{N} + \overrightarrow{f} = \frac{d\overrightarrow{P}}{dt}$$

$$-f = -2$$

Conservation of Linear Momentum

A system is called mechanically isolated, if the sum of external forces applied on the system is zero ($\sum \vec{F}_{ext} = 0$); then

$$\frac{d\vec{P}}{dt} = \sum \vec{F}_{ext}$$

$$\sum \vec{F}_{ext} = 0$$

$$\vec{P}_i = \vec{P}_f$$

Linear momentum is conserved

Conservation of Linear Momentum

Application 8:

- Consider two pucks (A) and (B) of respective masses $m_A = 200g$ and $m_B = 300g$.
- (A), moves with the velocity $\vec{V}_A = V_A \vec{\imath}$, enters in a head-on collision with (B), initially at rest.
- After collision, (A) rebounds with the velocity $\vec{V}_A' = V_A'\vec{\imath}$ and (B) is moves with the velocity $\vec{V}_B' = V_B'\vec{\imath}$.

Conservation of Linear Momentum

Be Smart ACADEMY

The figure below shows the positions of the centers of masses of (A) and (B) obtained.

The time interval separating two successive dots is $\tau = 20ms$.

- 1. Calculate the algebraic values V_A , V_A' and V_B' .
- 2.Determine the linear momentums \overrightarrow{P}_A and \overrightarrow{P}_A' of the puck (A) before and after collision respectively and \overrightarrow{P}_B' of the puck (B) after collision.
- 3. Deduce the linear momentums \overrightarrow{P} and \overrightarrow{P}' of the center of mass of the system [(A) and (B)] before and after collision, respectively.
- 4. Compare \overrightarrow{P} and \overrightarrow{P}' then conclude.

$$m_A = 0.2Kg; V_A; \& V_A'; m_B = 0.3Kg; V_B = 0; \& V_B'; \tau = 20ms$$

1) Calculate the algebraic values V_A , V_A' and V_R'

$$V_A = \frac{A_1 A_6}{5\tau} = \frac{5 \times 10^{-2}}{5 \times (20 \times 10^{-3})}$$

$$A_1 \quad A_2 \quad A_3 \quad A_4 \quad A_5 \quad A_6$$

$$V_A = 0.5m/s$$
 Be Smart

 $V'_A = \frac{A'_1 A'_6}{5\tau} = \frac{1 \times 10^{-2}}{5 \times (20 \times 10^{-3})} \quad V'_A = 0.1 m/s$

$$V_A'=0.1m/s$$

$$m_A = 0.2Kg; V_A = ?; \& V'_A = ?; m_B = 0.3 Kg; V_B = 0; \& V'_B = ?$$

$$V_B' = \frac{B_1' B_6'}{5\tau}$$

$$V_B' = \frac{4 \times 10^{-2}}{5 \times (20 \times 10^{-3})}$$

$$B_1' B_2' B_3' B_4' B_5' B_6'$$

$$4cm$$

$$V_B'=0.4m/s$$

$$m_A = 0.2 Kg; \ V_A = 0.5 m/s; \ \& \ V_A' = 0.1 m/s; \ m_B = 0.3 KeV_B' ; \ V_B = 0; \& V_B' = 0.4 m/s$$

2.Determine the linear momentums \vec{P}_A and \vec{P}_A' of the puck (A) before and after collision respectively and \vec{P}_B' of the puck (B) after collision.

$$\overrightarrow{P}_A = m_A \cdot \overrightarrow{V}_A = 0.2 \times (0.5\overrightarrow{i})$$
 $\overrightarrow{P}_A = 0.1\overrightarrow{i} (Kg.m/s)$

$$\vec{P}'_A = m_A \cdot \vec{V}'_A = 0.2 \times (-0.1\vec{\iota})$$
 $\vec{P}'_A = -0.02\vec{\iota} (Kg.m/s)$

$$\vec{P}'_B = m_B \cdot \vec{V}'_B = 0.3 \times (0.4\vec{i})$$
 $\Rightarrow \vec{P}'_B = 0.12\vec{i} (Kg.m/s)$

$$\overrightarrow{P}_A = 0.1\overrightarrow{i} \text{ (kgm/s)}; \overrightarrow{P}_A' = -0.02\overrightarrow{i} \text{ (kgm/s)}; \overrightarrow{P}_B' = 0.12\overrightarrow{i} \text{ (kgm/s)}$$

3. Deduce the linear momentums \vec{P} and \vec{P}' of the center of mass of the system [(A) and (B)] before and after collision, respectively.

$$\overrightarrow{P} = \overrightarrow{P}_A + \overrightarrow{P}_B = 0.1\overrightarrow{i} + 0$$
 $\overrightarrow{P} = 0.1\overrightarrow{i} (Kg.m/s)$

$$\vec{P}' = \vec{P}'_A + \vec{P}'_B = -0.02\vec{i} + 0.12\vec{i}$$
 $\vec{P}' = 0.1\vec{i} (Kg.m/s)$

4. Compare \overrightarrow{P} and \overrightarrow{P}' then conclude.

$$\vec{\mathbf{P}} = \vec{\mathbf{P}}' = \mathbf{0}.\,\mathbf{1}\vec{\imath}\,(Kg.\,m/s)$$

Then the linear momentum of the system is conserved

Grade 12 LS – Physics

Be Smart ACADEMY

Chapter 2: Linear Momentum

Prepared and presented by: Mr. Mohamad Seif

1 Identify the types of Collision between two particles

2 To study the Elastic Collision of two particles

ACADEMY

Types of Collision between two particles

Collision: are observed between billiards balls or between two cars...

Usually, collision last for a very short time, so external forces are neglected with respect to internal forces.

Non -elastic Collision

In-elastic Collision

Perfectly In-elastic Collision

Collision between Bullet & wood box. The two bodes stick together and form a new system

Linear momentum is conserved $\vec{P}_{sys(bef)} = \vec{P}_{sys(aft)}$ Kinetic energy is not conserved: $KE_{sys(bef)} \neq KE_{sys(aft)}$

After Collision

Be Smart ACADEMY

A. Elastic Collision of two particles

The linear momentum of the system is conserved:

$$\overrightarrow{P}_{before} = \overrightarrow{P}_{after}$$

$$\overrightarrow{m_1}\overrightarrow{V_1} + \overrightarrow{m_2}\overrightarrow{V_2} = \overrightarrow{m_1}\overrightarrow{V_1'} + \overrightarrow{m_2}\overrightarrow{V_2'}$$

The velocities are collinear (head-on collision), then:

$$m_1V_1 + m_2V_2 = m_1V_1' + m_2V_2'$$

 $m_1V_1 - m_1V_1' = m_2V_2' - m_2V_2...(1)$

$$m_1(V_1 - V_1') = m_2(V_2' - V_2) \dots \dots (2)$$

The total kinetic energy of the system of the is conserved:

$$K.E_{before} = K.E_{after}$$

$$\frac{1}{2}m_1V_1^2 + \frac{1}{2}m_2V_2^2 = \frac{1}{2}m_1{V_1'}^2 + \frac{1}{2}m_2{V_2'}^2$$

$$m_1 (V_1^2 - V_1'^2) = m_2 (V_2'^2 - V_2^2)$$

$$m_1(V_1 - V_1')(V_1 + V_1') = m_2(V_2' - V_2)(V_2' + V_2) \dots \dots \dots (3)$$

$$m_1(V_1 - V_1') = m_2(V_2' - V_2) \dots \dots (2)$$

$$m_1(V_1 - V_1')(V_1 + V_1') = m_2(V_2' - V_2)(V_2' + V_2) \dots \dots \dots (3)$$

Divide equation (3) by equation (2):

$$\frac{m_1(V_1 - V_1')(V_1 + V_1')}{m_1(V_1 - V_1')} = \frac{m_2(V_2 - V_2)(V_2 + V_2)}{m_2(V_2 - V_2)}$$

$$(V_1+V_1')=(V_2'+V_2).....(4)$$

Solve the system of equation (1) and (4):

$$\begin{cases} m_1 V_1 - m_1 V_1' = m_2 V_2' - m_2 V_2 \dots \dots (1) \\ (V_1 + V_1') = (V_2' + V_2) \dots \times (m_1) \dots \dots (4) \end{cases}$$

$$\begin{cases} m_1 V_1 - m_1 V_1' = m_2 V_2 - m_2 V_2 \dots (1) \\ m_1 V_1 + m_1 V_1' = m_1 V_2' + m_1 V_2 \dots (4) \end{cases}$$

Add the two equations:

$$2m_1V_1 = m_2V_2' + m_1V_2' - m_2V_2 + m_1V_2$$

$$2m_1V_1 = V_2'(m_1 + m_2) + V_2(m_1 - m_2)$$

$$2m_1V_1 - V_2(m_1 - m_2) = V_2'(m_1 + m_2)$$

$$V_2' = \frac{2m_1V_1 - V_2(m_1 - m_2)}{(m_1 + m_2)}$$

$$V_2' = \left[\frac{2m_1}{(m_1 + m_2)}\right] \cdot V_1 + \left[\frac{m_2 - m_1}{m_1 + m_2}\right] \cdot V_2$$

Substitute V_2' in equation (4):

$$V_1' = \left[\frac{2m_2}{(m_1 + m_2)}\right] \cdot V_2 + \left[\frac{m_1 - m_2}{m_1 + m_2}\right] \cdot V_1$$

Application 9:

Consider a body (S_1) , of mass $m_1 = 400 \, \text{g}$, moves on a horizontal plane with a speed $V_1 = 3.464 \, m/s$ enters in a head-on perfectly elastic collision with a body (S_2) of mass $m_2 = 800 \, \text{g}$ initially at rest.

After collision (S_1) rebounds with a speed V'_1 and (S_2) moves forward with moves with a speed V'_2 as shown in the figure.

Before collisior

Calculate the speeds V_1' of (S_1) and V_2' of (S_2) after collision

 $m_1 = 0.4 \text{kg}; V_1 = 3.464 m/s; m_2 = 0.8 \text{kg}; V_2 = 0$

Conservation of linear momentum of the system [(A), (B)]:

$$\vec{P}_{before} = \vec{P}'_{after}$$

$$\mathbf{m_1} \vec{\mathbf{V_1}} + \mathbf{m_2} \vec{\mathbf{V_2}} = \mathbf{m_1} \vec{\mathbf{V_1}} + \mathbf{m_2} \vec{\mathbf{V_2}}$$

The velocities are collinear then:

$$m_1V_1 = m_1V_1' + m_2V_2'$$

$$m_1V_1 - m_1V_1' = m_2V_2' \dots (1)$$

$$m_1(V_1 - V_1') = m_2 V_2' \dots (2)$$

Conservation of kinetic energy of the system [(A), (B)]:

$$KE_{before} = KE_{after}$$

$$\frac{1}{2}\mathbf{m}_{1}V_{1}^{2} + \frac{1}{2}m_{2}V_{2}^{2} = \frac{1}{2}\mathbf{m}_{1}{V_{1}'}^{2} + \frac{1}{2}\mathbf{m}_{2}{V_{2}'}^{2}$$

$$m_1V_1^2 = m_1{V_1'}^2 + m_2{V_2'}^2$$

$$m_1V_1^2 - m_1{V_1'}^2 = m_2{V_2'}^2$$

$$m_1(V_1^2 - {V_1'}^2) = m_2 {V_2'}^2$$

$$m_1(V_1 - V_1')(V_1 + V_1') = m_2 V_2'^2 \dots (3)$$

$$m_1(V_1 - V_1') = m_2 V_2' \dots \dots (2)$$

 $m_1(V_1 - V_1')(V_1 + V_1') = m_2 {V_2'}^2 \dots \dots (3)$

Divide equation (3) by equation (2):

$$\frac{m_{1}^{\prime}(V_{1}-V_{1}^{\prime})(V_{1}+V_{1}^{\prime})}{m_{1}^{\prime}(V_{1}-V_{1}^{\prime})} = \frac{m_{2}V_{2}^{\prime 2}}{m_{2}V_{2}^{\prime 2}}$$

$$V_{1}+V_{1}^{\prime}=V_{2}^{\prime}\dots\dots(4)$$

Types of Collision between two particles

Solve the system of equation (1) and (4):

$$\begin{cases} m_1 V_1 - m_1 V_1' = m_2 V_2' \dots \dots (1) \\ (V_1 + V_1') = (V_2') \dots \times (m_1) \dots \dots (4) \end{cases}$$

$$\begin{cases} m_1 V_1 - m_1 V_1' = m_2 V_2' \dots (1) \\ m_1 V_1 + m_1 V_1' = m_1 V_2' \dots (4) \end{cases}$$

Add the two equations:

$$m_1V_1 + m_1V_1 = m_2V_2' + m_1V_2'$$

$$2m_1V_1 = V_2'(m_1 + m_2)$$

$$DEV_2' = \frac{2m_1V_1}{(m_1 + m_2)}$$

$$V_2' = \frac{2m_1V_1}{(m_1 + m_2)}$$

$$V_2' = \frac{2 \times 0.4 \times 3.464}{(0.4 + 0.8)}$$

$$V_2'=2.31m/s$$

Substitute in equation (4):

$$\mathbf{V_1} + \mathbf{V_1'} = \mathbf{V_2'}$$

$$3.464 + V_1' = 2.31$$

Smart DEMY -1.15m/s

Application 10:

- Consider a particle (A), of mass m_1 , moves on a horizontal plane with a speed $V_1 = 1.5m/s$ enters in a head-on <u>perfectly</u> elastic collision with a particle (B) of mass $m_2 = 2m_1$ initially at rest.
- After collision (A) the speed of (A) is V'_1 and that of (B) is V'_2 as shown in the figure.
- Calculate the speeds V_1' of (A) and V_2' of (B) after collision

Grade 12 LS – Physics

Be Smart ACADEMY

Chapter 2: Linear Momentum

Prepared and presented by: Mr. Mohamad Seif

To study Inelastic collision between two particles

ACADEMY

B. Inelastic Collision of two particles

Normal Inelastic collision

Completely inelastic collision: objects stick together afterwards

For both In-Elastic collision

$$\overrightarrow{P}_{sys_{(before)}} = \overrightarrow{P}_{sys_{(after)}}$$
 $KE_{sys_{(before)}} \neq KE_{sys_{(after)}}$

Application 10:

- Consider a solid (A), of mass $m_1 = 0.5$ kg, moves with a speed V_1
- = 1.5m/senters in a head on collision with a solid (B) of mass m_2
- = 1kg moves with a speed $V_2 = 0.9m/s$.
- After collision (A) moves back with a speed $V'_1 = 3$ m/s and (B) Moves with a speed V'_2 .

Be Smart ACADEMY

- 1. Which variable is conserved during collision.
- 2. Determine the speed V_2' of body (B) after collision.
- 3. Calculate the kinetic energy of the system [(A), (B)] before and after collision. Deduce the nature of collision.

$$m_1 = 0.5kg; V_1 = 1.5m/s; m_2 = 1kg; V_2 = 0.9m/s; V'_1 = 3m/s$$

- 1. Which variable is conserved during collision.
- During collision linear momentum is conserved.
- 2. Determine the magnitude of the speed V_2' of body (B) after collision.

Apply conservation of linear momentum of the system:

$$\overrightarrow{P}_{sys_{(before)}} = \overrightarrow{P}_{sys_{(after)}}$$

$$\overrightarrow{P}_1 + \overrightarrow{P}_2 = \overrightarrow{P}_1' + \overrightarrow{P}_2'$$

$$m_1\overrightarrow{V}_1 + m_2\overrightarrow{V}_2 = m_1\overrightarrow{V}_1' + m_2\overrightarrow{V}_2'$$

$$0.5 \times (1.5\vec{i}) + 1 \times (-0.9\vec{i}) = 0.5 \times (-3\vec{i}) + 1 \times \vec{V}'_2$$

$$\vec{\mathbf{V}}_2' = \mathbf{1.35}\vec{\imath} \ (\text{m/s})$$

$$m_1 = 0.5kg$$
; $V_1 = 1.5m/s$; $m_2 = 1kg$; $V_2 = 0.9m/s$; $V'_1 = 3m/s$

3. Calculate the kinetic energy of the system [(A), (B)] before and after collision.

$$KE(sys)_{bef} = KE_A + KE_B$$

$$KE(sys)_{bef} = \frac{1}{2}m_1V_1^2 + \frac{1}{2}m_2V_2^2$$

$$KE(sys)_{bef} = 0.5 \times 0.5 \times (1.5)^2 + 0.5 \times 1 \times (0.9)^2$$

$$KE(sys)_{before} = 0.56 + 0.405$$

$$KE(sys)_{before} = 0.965J$$

$$m_1 = 0.5kg; V_1 = 1.5m/s; m_2 = 1kg; V_2 = 0.9m/s; V'_1 = 3m/s$$

3. Calculate the kinetic energy of the system [(A), (B)] before and after collision.

$$KE(sys)_{after} = KE_A + KE_B$$

$$KE(sys)_{after} = \frac{1}{2}m_1{V'_1}^2 + \frac{1}{2}m_2{V'_2}^2$$

$$KE(sys)_{after} = 0.5 \times 0.5 \times (3)^{2} + 0.5 \times 1 \times (1.35)^{2}$$

$$KE(sys)_{after} = 2.25 + 0.911$$

$$KE(sys)_{after} = 3.16J$$

$$m_1 = 0.5kg$$
; $V_1 = 1.5m/s$; $m_2 = 1kg$; $V_2 = 0.9m/s$; $V'_1 = 3m/s$

4. What is the nature of the collision.

 $KE(sys)_{after} = 0.965J$

And

 $KE(sys)_{after} = 3.16J$

 $KE(sys)_{before} \neq KE(sys)_{after}$

Then the collision is not Elastic

